A Combination of Bernstein and Improved Block-Pulse Functions for Solving a System of Linear Fredholm Integral Equations

نویسندگان

چکیده

The present paper illustrates a new numerical technique to solve system of linear Fredholm integral equations the second kind. current work introduces coupling between hybrid Bernstein functions and improved block-pulse (HBI). method transforms kind into an algebraic that can be solved by using classical methods. Some examples are introduced validate approach. results showed is promising, powerful, ultimately accurate, highly efficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of system of linear integral equations via improvement of block-pulse functions

In this article, a numerical method based on  improvement of block-pulse functions (IBPFs) is discussed for solving the system of linear Volterra and Fredholm integral equations. By using IBPFs and their operational matrix of integration, such systems can be reduced to a linear system of algebraic equations. An efficient error estimation and associated theorems for the proposed method are also ...

متن کامل

Theory of block-pulse functions in numerical solution of Fredholm integral equations of the second ‎kind‎

Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...

متن کامل

Solution of Nonlinear Fredholm-Volterra Integral Equations via Block-Pulse ‎Functions

In this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Also, effect of noise shows our solutions ...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2022

ISSN: ['1026-7077', '1563-5147', '1024-123X']

DOI: https://doi.org/10.1155/2022/6870751